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Abstract

Under a generalized coordinate transformation with arbitrary grid velocity, the gas-kinetic BGK equation is reformu-
lated in a moving frame of reference. Then, a unified conservative gas-kinetic scheme is developed for the viscous flow com-
putation in the moving grid system in the Eulerian space. Due to the coupling between the grid velocity and the overall
solution algorithm, the Eulerian and Lagrangian methods become two limiting cases in the current gas-kinetic method.
A fully conservative formulation can be obtained even in the Lagrangian limit. The moving grid method extends the appli-
cable regime of the gas-kinetic scheme to the flows with free surface or moving boundaries, such as dam break problem and
airfoil oscillations. In order to further increase the robustness of the moving grid method, similar to the arbitrary Lagrang-
ian–Eulerian (ALE) method, a conservative adaptive grid technique is also implemented in the current method to redistrib-
ute the mesh concentration to the rapid variational flow region and remedy the distorted moving mesh due to the coupling
between grid velocity and fluid speed. Many numerical examples from incompressible flow to the supersonic shock interac-
tion are presented. The test cases verify the accuracy and robustness of the unified moving grid gas-kinetic method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

There are two different coordinate system for description of fluid motion: the Eulerian one describes fluid
motion at fixed locations, and the Lagrangian one follows fluid particles. Considerable progress has been
made over the past two decades on developing computational fluid dynamics (CFD) methods based on the
above two coordinates system. As the unsteady flow calculations with moving boundaries and interfaces
become important, such as found in the flutter simulation of wings, turbomachinery blades, and multiphase
flow, the development of fast and reliable methods for dynamically deforming computational domain is
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required [17]. This research will help significantly the industry, such as the aerodynamic shape optimization
studies and the detonative chemical reactive flow computation.

There are many moving mesh methods in the literature. One example is the static mesh movement method,
where the new mesh is generated at each time step according to certain monitor function and the flow variables
are interpolated into the newly generated mesh. Then, the flow update through the cell interface fluxes is done
on a static mesh. In order to increase the accuracy, the mesh can be properly adapted [9]. Another example is
the dynamical one, where the mesh is moving according to certain velocity. At the same time, the fluid vari-
ables are updated inside each moving control volume within a time step. The second method is mostly used to
track the interface location, to account for changes in the interface topology, and to resolve small-scale struc-
ture at singular point. The most famous one for this dynamical mesh moving method is the Lagrangian
method. Through the research in the past decades, it has been well recognized that the Lagrangian method
is always associated with the mesh tangling once the fluid velocity is used as the mesh moving velocity. In
order to avoid severe mesh distortion in the Lagrangian method, many techniques have been developed.
The widely used one at present time is the arbitrary Lagrangian–Eulerian (ALE) technique, which uses con-
tinuous re-zoning and re-mapping from Lagrangian to the Eulerian grid. Unfortunately, this process requires
interpolations of geometry and flow variables [14]. In aerospace engineering, in order to re-distribute the
boundary deformation dynamically into the whole computational domain a spring network approach has
been usually used to determine the motion of the mesh point, such as those around a deforming airfoil
[2,16,23]. Here, a smoothing global operator is applied in maintaining grid smoothness and grid angles. This
process is always associated with iterative methods resembling an elliptic grid generator. With a general trans-
formation between the physical (t,x,y) and the computational space (k,n,g), the Navier–Stokes equations can
be written in a conservative form [7]. Many numerical schemes have been developed based on the above for-
mulation for the Navier–Stokes equations directly, such as in the cases of fluid-structure interaction and fluid
induced vibration. Instead of constructing an exact Riemann solver, an efficient approximate Riemann solu-
tion has been obtained [6], where the grid velocity is explicitly used in the wave decomposition. Even without
using conservative governing equations explicitly, many moving mesh methods for incompressible Navier–
Stokes equations, hyperbolic system, or chemical reactive flow, have also been developed with detailed con-
sideration of numerical cell deformation [20,4,1].

Recently, a successful moving mesh method for inviscid Euler equations has been developed by Hui et al.
[10] on the target of crisp capturing of slip line. In this unified coordinate method, with a prescribed grid veloc-
ity, the inviscid flow equations are written in a conservative form in the computational domain (k,n,g), as well
as the geometric conservation laws which control the mesh deformation. The most distinguishable merit in the
unified coordinate method is that the fluid equations and geometric evolution equations are written in a com-
bined system, which is different from the fluid equations alone [7]. Furthermore, due to the coupling of the
fluid and geometric system, for the first time the multi-dimensional Lagrangian gas dynamic equations have
been written in a conservative form. As a consequence, theoretically it has been shown that the multi-dimen-
sional Lagrangian system is only weakly hyperbolic. Numerically, in the unified coordinate system the fluid
and geometric variables can be updated simultaneously. In order to overcome the disadvantage in the
Lagrangian method, in the unified coordinate system the grid velocity is set to be hq, where q = (U,V) is
the fluid velocity and h is a parameter which is to be determined by conditions, such as the mesh alignment
with the slip surface, or keeping grid angle during the mesh movement. Therefore, the grid velocity can be
changed locally according to the value of h. In a recent paper [11], the grid velocity has been further general-
ized to (hU,kV), where h and k are two parameters to be determined. The great achievement of the unified
coordinate method is that the numerical diffusion across the slip line is reduced to a minimum with the crisp
capturing of contact discontinuity. However, in the complicated flow movement, in order to avoid the severe
mesh distortion, the constraints, such as keeping mesh orthogonality and grid angles, have to be used in the
unified coordinate system. As a result, in most cases, the constraint automatically enforces the mesh velocity
being zero, such as in the case of gas implosion inside a square. Otherwise, for flow problems with circulations,
any mesh movement method, once the grid speed is coupled with the fluid velocity, will distort the mesh even-
tually and stop the computation. Also, in order to capture the slip line, the unified method is mainly focusing
on the solution of the Euler equations. For the viscous flow, the equations, see Appendix, become much more
complicated in a unified coordinate system.
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Based on the gas-kinetic Boltzmann equation, the Navier–Stokes equations can be derived using the Chap-
man–Enskog expansion [5]. In the gas-kinetic representation, all macroscopic flow variables are the moments
of a single particle distribution function and the particle movement is basically the linear transport and col-
lision. In the past years, we have been concentrated on developing the gas-kinetic scheme in the Eulerian space
with stationary grid. The gas-kinetic BGK scheme has been well developed for the compressible Navier–
Stokes solutions [24], and the scheme is especially accurate for the supersonic viscous and heat conducting flow
[25,19]. Since a gas distribution function includes both equilibrium and non-equilibrium flow properties, the
inviscid and viscous fluxes are obtained simultaneously in the gas-kinetic scheme.

In the gas-kinetic approach, the gas distribution function is a scalar function, which can be easily transferred
from one reference of frame to another one once the relative speed between them is given. The purpose of this
paper is to develop a unified gas-kinetic method based on the transformation in [10]. Firstly, the gas-kinetic
BGK equation is transformed from the physical space (t,x,y) to the computational space (k,n,g). Then, the
corresponding conservative Euler and Navier–Stokes equations in the computational domain are obtained
using the Chapman–Enskog expansion. In the computational space (k,n,g), the gas-kinetic BGK equation is
solved for the solution of the gas distribution function in the computational domain, which is subsequently used
to evaluate the flux across a moving cell interface in the Eulerian space in order to update the flow variables
inside each controlling volume with moving boundaries. Since the inviscid and viscous fluxes are included
simultaneously in the gas-kinetic formulation, the Navier–Stokes fluxes are obtained automatically across
the moving cell interface. The advantage of the current method, as for the unified coordinate system [10], is that
an exact conservative mathematical formulation for both fluid and geometrical variables is used and kept in the
numerical scheme. If the unified system is not used, the satisfaction of geometrical conservation laws are mostly
based on the physical intuition in the multi-dimensional case, such as the moving mesh approach using flux vec-
tor splitting method for the Euler equations [15]. Since the gas-kinetic scheme solves the viscous governing
equations intrinsically, different from Hui’s unified method for the Euler equations it has no the ability to
resolve the slip line discontinuity without any transition point. In other words, the dissipation in the kinetic
scheme will take effect to smear the contact discontinuity, but the magnitude of smearing under the unified
coordinate transformation will be much reduced in comparison with the scheme without mesh moving, espe-
cially for the cases that the physical thickness cannot be resolved by the cell size. Furthermore, in order to avoid
the severe mesh distortion due to the coupling of grid speed with the fluid velocity, an adaptive mesh method is
going to be used to regularize the mesh distribution in the domain. In other words, once the quality of the mesh
is deteriorated, at a fixed time instant the grid points are redistributed according to a monitor function, and all
corresponding conservative flow variables are interpolated from the old to a newly generated mesh [21,13]. The
function of this step is two folds. Firstly, it is necessary for a unified scheme to have some mechanism to reg-
ularize the mesh from tangling in order to make the scheme robustness. Secondly, for the current viscous flow
computation, by using a proper monitor function in the adaptive mesh step the grid points can be easily con-
centrated on the high gradient regions, where the accuracy of the solution can be much improved, such as inside
the boundary layer. With the unique coupling between the moving and adaption in the unified scheme, we have
successfully simulated the free surface flow using the Lagrangian gas-kinetic scheme.

This paper is organized as the following. Section 2 is about the mathematical formulation of the gas-kinetic
BGK model in a unified coordinate system and the construction of the gas-kinetic scheme. Section 3 is about
the numerical experiments, where many examples from free surface flow to the supersonic flow reflections are
presented. The last section is the conclusion.

2. A gas-kinetic BGK scheme under unified coordinate system

2.1. Gas-kinetic BGK model under coordinate transformation

The BGK model of the approximate Boltzmann equation in two-dimensional space (2D) can be written as
[3]:
ft þ ufx þ vfy ¼
g � f

s
; ð1Þ
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where f is the gas distribution function and g is the equilibrium state approached by f. Both f and g are func-
tions of space (x,y), time t, particle velocity (u,v), and internal variable f. As presented in [10], a coordinate
transformation can be used from the physical domain (t,x,y) to the computational domain (k,n,g):
dt ¼ dk;

dx ¼ U gdkþ Adnþ Ldg;

dy ¼ V gdkþ BdnþMdg;

8><
>: ð2Þ
where (Ug,Vg) are the grid velocity, and (A,B,L,M) are determined by the compatibility conditions or the geo-
metric conservative laws:
oA
ok ¼

oUg

on ;

oB
ok ¼

oV g

on ;

oL
ok ¼

oUg

og ;

oM
ok ¼

oV g

og :

8>>>>><
>>>>>:

ð3Þ
With the above transformation (2), the gas-kinetic BGK equation becomes:
o

ok
ðDf Þ þ o

on
f½ðu� UgÞM � ðv� V gÞL�f g þ

o

og
f½�ðu� UgÞBþ ðv� V gÞA�f g ¼

g � f
s

D; ð4Þ
where D = AM � BL is the Jacobian of the transformation. The schematic relation between particle velocity,
flow velocity, and mesh moving velocity is shown in Fig. 1.

For an equilibrium flow with distribution f = g, by taking the conservative moments / ¼
1; u; v; 1

2
ðu2 þ v2 þ f2Þ

� �T
to Eq. (4), the corresponding Euler equations in computational domain in the Eule-

rian space can be obtained:
o

ok

qD

qDU

qDV

qDE

0
BBB@

1
CCCAþ o

on

qðI � IgÞ
qUðI � IgÞ þ PM

qV ðI � IgÞ � PL

qEðI � IgÞ þ PI

0
BBB@

1
CCCAþ o

og

qðJ � J gÞ
qUðJ � J gÞ � PB

qV ðJ � J gÞ þ PA

qEðJ � J gÞ þ PJ

0
BBB@

1
CCCA ¼ 0; ð5Þ
where U and V are fluid velocity in the x- and y-directions, I = UM � VL, Ig = UgM � VgL, J = AV � BU,
and Jg = AVg � BUg. Note again that the time evolution of the physical quantities is still in the Eulerian space.
The difference between the Euler equations in Eulerian space and the above system is due to the mesh moving
in space and time.

For the viscous and heat conducting flow, the Chapman–Enskog expansion of Eq. (4) up to the first-order
of s gives:
Fig. 1. Schematic relation between particle velocity (u,v), flow velocity (U,V), and mesh moving velocity (Ug,Vg).
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f ¼ g � s
D

o

ok
ðDgÞ þ o

on
f½ðu� UgÞM � ðv� V gÞL�gg þ

o

og
f½�ðu� UgÞBþ ðv� V gÞA�gg

� �
:

Taking moments of / again to Eq. (4) with the above NS distribution function, we can get the Navier–Stokes
equations in moving space, which are presented in Appendix. Numerically, instead of solving the viscous gov-
erning equations in Appendix, we are going to solve the gas-kinetic equation for the viscous solution.

2.2. Numerical BGK–NS scheme in a moving mesh system

In this section, we are going to present the gas-kinetic method to solve Eq. (4) by a directional splitting
method. For example, the BGK model (4) in the n-direction is:
o

ok
ðDf Þ þ o

on
f½ðu� U gÞM � ðv� V gÞL�f g ¼

g � f
s

D: ð6Þ
In order to evaluate the fluxes across a moving interface n = constant, let us first define its normal direction
and tangent directions:
~n ¼ rn=jrnj ¼ ðM ;�LÞ=S; ~t ¼ ðL;MÞ=S;
where S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ L2

p
is the physical length of the cell interface. Then, the particle velocity (u � Ug, v � Vg)

relative to a moving cell interface can be decomposed into the normal ~u and tangential ~v velocities as well,
namely,
~u ¼ ðu� U gÞM=S � ðv� V gÞL=S;

~v ¼ ðu� U gÞL=S þ ðv� V gÞM=S:

�
ð7Þ
Hence, with the above transformation, Eq. (6) in the n-direction becomes:
o

ok
ðDf Þ þ o

on
ðS~uf Þ ¼ g � f

s
D: ð8Þ
This is the basic equation to be solved to construct the gas distribution function f at the moving cell interface
n = constant, then calculate the numerical fluxes. In the above equation, D is basically the cell area and S is the
cell interface length. At the center of a moving cell interface the above equation can be re-written as
o

ok
ðf Þ þ o

o~x
ð~uf Þ ¼ g � f

s
; ð9Þ
where ~x is the length scale in the normal direction of the moving cell interface in the physical space. Since
dk = dt, the integral solution of the above equation becomes
f ðniþ1=2; gj; t; ~u;~v; fÞ ¼
1

s

Z t

0

g ~x0; t0; ~u;~v; fð Þe�ðt�t0Þ=sdt0 þ e�t=sf0ð~xiþ1=2 � ~ut;~vÞ; ð10Þ
where ~x0 ¼ ~xiþ1=2 � ~uðt � t0Þ is the trajectory of a particle motion relative to the moving cell interface and f0 is
the initial gas distribution function f at the beginning of each time step (t = 0). The scheme based on the above
solution will be identical to the BGK–NS method [24], even though the system here ðk;~xÞ is moving relative to
the stationary system (t,x). The difference only appears in the construction of the distribution functions in
both g and f0, which are presented in the following.

In the local moving frame of reference at interface n = constant, the Maxwellian distribution should have
the form:
g ¼ q
k
p

� �ðKþ2Þ=2

exp �k ~u� ~U
� �2 þ ~v� ~V

� �2 þ f2
h in o

;

where the averaged macroscopic fluid velocity ð ~U ; ~V Þ is related to the fluid velocity (U,V) in the inertia frame
of reference:
~U ¼ ðU � UgÞM=S � ðV � V gÞL=S;
~V ¼ ðU � U gÞL=S þ ðV � V gÞM=S:

(
ð11Þ
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Numerically, Eq. (9) is basically the same equation as the one we have solved in the Eulerian space, where ~u;~v
are the particle velocity, and ~U ; ~V are the macroscopic velocity in the ~n and~t directions. Then, the standard
BGK–NS method [24] can be used to solve Eq. (9) to evaluate the time-dependent gas distribution function
f ðniþ1=2; gj; t; ~u;~v; fÞ at the cell interface n = ni+1/2. The detailed formulation of the gas-kinetic BGK–NS
scheme for the Navier–Stokes solutions is given in [24]. Therefore, standing on the moving cell interface
the fluxes can be explicitly obtained:
Fq

Fq~u

Fq~v

F~E

0
BBB@

1
CCCA

iþ1=2;j

¼
Z

~u

1

~u

~v
1
2
ð~u2 þ ~v2 þ f2Þ

0
BBB@

1
CCCAf ðniþ1=2; gj; t; ~u;~v; fÞd~ud~vdf: ð12Þ
Since different numerical cells can move with different grid velocity, in order to update the flow variables
inside each time-dependent computational cell we need to update the conservative variables inside each cell
in the common inertia frame of reference, i.e., the so-called Eulerian space. Therefore, we need to transfer
the fluxes in Eq. (12) standing on the moving cell interface into the fluxes for the mass, momentum and energy
transport of the inertia frame of reference. In other words, the above obtained gas distribution function
f ðniþ1=2; gj; t; ~u;~v; fÞ and its mass flux across the moving cell interface ~uf ðniþ1=2; gj; t; ~u;~v; fÞ will carry the mass,
momentum and energy densities ð1; u; v; 1

2
ðu2 þ v2 þ f2ÞÞ in the inertia frame of reference. So, the time-depen-

dent numerical flux in the Eulerian space in the~n direction across the cell interface n = C should be calculated
as
Fq

Fm

Fn

FE

0
BBB@

1
CCCA

iþ1=2;j

¼
Z

S~u

1

u

v
1
2
ðu2 þ v2 þ f2Þ

0
BBB@

1
CCCAf ðniþ1=2; gj; t; ~u;~v; fÞd~ud~vdf: ð13Þ
In the above equation, the distribution function f is a scalar function, which is invariant under coordinate
transformation, but the particle velocities ð~u;~vÞ and (u,v) are defined differently in the different frame of ref-
erence. In order to evaluate the above flux integration, the easiest way is to write the (u,v) velocities in terms of
ð~u;~vÞ. Based on the transformation (7), we have:
u ¼ Ug þ
M~uþ L~v

S
; v ¼ V g þ

�L~uþM~v
S

:

Therefore, Eq. (13) becomes
Fq

Fm

Fn

FE

0
BBB@

1
CCCA

iþ1=2;j

¼

SFq

MFq~u þ LFq~v þ SUgFq

�LFq~u þMFq~v þ SV gFq

ðMU g � LV gÞFq~u þ ðLU g þMV gÞFq~v þ SF~E þ S
2
ðU 2

g þ V 2
gÞFq

0
BBB@

1
CCCA ð14Þ
where ðFq;Fq~u;Fq~v;F~EÞ are given in Eq. (12). So, the fluxes relative to the moving cell interface in the Eule-
rian space is just a linear combination of the fluxes in the moving frame of reference due to the linear trans-
formation between the inertia and moving space with relative velocity (Ug,Vg). Similarly, the fluxes at the cell
interface g = constant, i.e., G, can be constructed as well.

With the above fluxes, the flow variables can be updated in each moving computational cell by
Qnþ1
i;j ¼ Qn

i;j þ
1

Dn

Z tnþ1

tn
Fi�1=2;j � Fiþ1=2;j

� �
dt þ 1

Dg

Z tnþ1

tn
Gi;j�1=2 �Gi;jþ1=2

� �
dt; ð15Þ
where Q = (qD,qDU,qDV,qDE)T, F ¼ ðFq;Fm;Fn;FEÞT given in Eq. (14), and G fluxes in the
g-direction.
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2.3. Adaptive grid method

If the moving grid velocity (Ug,Vg) is chosen according to the fluid velocity, such as the Lagrangian method
with (Ug,Vg) = (U,V), it is very hard to keep the mesh regularity. In almost all cases, the mesh will get tangled
to generate a negative cell area D. In order to prevent this from happening, many mesh remedy techniques
have been developed, such as ALE method. In this paper, we are going to use the adaptive mesh method
[21] to overcome mesh-tangling problem. The function of this is two folds. Firstly, a smooth mesh will be gen-
erated before grid crashing. Secondly, the mesh can be automatically redistributed and concentrated on the
region with high velocity or pressure gradients to improve the computational accuracy. However, when more
grid points are concentrated in the shock region, the grid size becomes very small, as well as the time step.
Therefore, the computational cost will be much increased. Also, since we do not resolve the shock structure,
the order of accuracy cannot be improved by the mesh adaptation [26]. But, the absolute value of accuracy can
be improved due to the small cell size. Certainly, it depends on the accuracy control in the interpolation
between different meshes. In an early paper [13], an adaptive grid method coupling with gas-kinetic BGK
scheme has been proposed. In the following, the mesh generation and adaptation are outlined.

In 2D, the widely used mesh generation techniques are based on the variational approaches. Let x = (x,y)
and n = (n,g) denote the physical and computational coordinates. A coordinate mapping from the computa-
tional domain Xc to the physical domain Xp is given by
x ¼ xðn; gÞ; y ¼ yðn; gÞ; ð16Þ
and the inverse map is
n ¼ nðx; yÞ; g ¼ gðx; yÞ: ð17Þ

The specific map is obtained by minimizing a functional with the following form:
~E½n; g� ¼ 1

2

Z
Xc

~rTxG1
~rxþ ~rTyG2

~ry
� �

dndg; ð18Þ
where ~r ¼ ðo=on; o=ogÞ and G1 and G2 are symmetric positive definite matrices which are formally called
monitor functions. The Euler–Lagrange equations can be obtained from the above equation:
~r � G1
~rx

� �
¼ 0; ~r � G2

~ry
� �

¼ 0: ð19Þ
Therefore, the mesh distribution in the physical space can be directly generated by solving (19). Numerically,
in this paper a directional splitting monitor function [22] will be used, namely G1 = G2 = diag{w1,w2}, where
w1, w2 are defined by
w1 ¼ 1þ a1jwj2 þ b1

ow
on

����
����
2

 !c1
2

; w2 ¼ 1þ a2jwj2 þ b2

ow
og

����
����
2

 !c2
2

: ð20Þ
In the above formula, w is the flow variable, such as velocity or pressure, a1, a2, b1, b2, c1, and c2 are some non-
negative constants, and their optimum values depend on flow problems. A second-order central difference
scheme can be used to discretize the mesh generation Eq. (19), and the difference equations can be solved
by iterative methods, such as Gauss–Seidel iteration.

As the monitor functions (20) are assumed to be constants, i.e., w1 = w2 = 1, the Euler–Lagrange Eq. (19)
become the well-known Laplace’s equation, from which a smooth mesh can be constructed. The frequency
to apply the adaptive mesh method depends on the physical problems solved. For example, in the first test case
in Section 3, after a few testing calculations, we know precisely when the mesh will get severely distorted. Before
that, a smoothing mesh method can be applied. After that, the mesh is smoothed every 200 time steps. However,
for the examples (5) and (6), due to the requirement of accurate capturing of the moving shock and boundary
layer, the adaptive grid technique is applied at every time step to redistribute the mesh concentration.

The purpose of this adaptive mesh generation is to regularize the mesh in the physical space which may be
distorted due to the mesh movement. The newly generated mesh has only a small modification from the ori-
ginal mesh with a limited number of iterations in solving (19). After constructing the new mesh according to a
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monitor function, we need to interpolate flow variables from the old to the newly obtained mesh. The conser-
vative interpolation scheme proposed by Tang and Tang [21] for a finite volume formulation is used. More
detailed formulation can be found in [13].

2.4. Numerical procedure

The numerical procedure for the gas-kinetic scheme on a moving and adaptive mesh can be summarize in
the following. In some numerical examples, the adaptive mesh method is not used, and the corresponding step
can be ignored. Also, all fluid quantities (q,qU,qV,qE) and the geometric variables (A,B,M,L) are defined at
each cell center. Any cell interface values are obtained through the average of the values in the adjacent cells.

Step 1: Initialize the conservative variables (q,qu,qv,qE) and (A,B,L,M) at t = k = 0 in the x � y plane.
Usually, n and g are the initial arc-length of their corresponding x- and y-coordinate lines. For exam-
ple, for the rectangular domain, we take Dn = Dx, and Dg = Dy when Dx and Dy are constants on the
physical domain initially. Or, we can simply choose two constants to define Dn and Dg. Then,
(A,B,L,M) are determined according to the definition:
A ¼ ox
on ;

B ¼ oy
on ;

L ¼ ox
og ;

M ¼ oy
og :

8>>>>><
>>>>>:

ð21Þ
Then, we calculate (Dq,Dqu,Dqv,DqE) inside each cell with D = AM � BL.
Step 2: Construct or modify the grid using the adaptive grid method in Section 2.3, and update the conser-

vative variables (q,qu,qv,qE) inside each cell in the physical domain. Sequently, calculate (A,B,L,M)
by Eq. (21) again and update (Dq,Dqu,Dqv,DqE) with the new D = AM � BL. The re-distribution of
conservative variables in this step is fully conservative.

Step 3: Given a grid velocity (Ug,Vg) at the center of each cell, such as the fluid velocity q in the gas-kinetic
Lagrangian method, at the cell interface n = ni+1/2 the grid velocity is calculated as
ðU gÞiþ1=2;j ¼
ðU gÞi;j þ ðU gÞiþ1;j

2
;

ðV gÞiþ1=2;j ¼
ðV gÞi;j þ ðV gÞiþ1;j

2
;

which are basically the average of the velocities from the neighboring cells. Then, based on (14) the
numerical fluxes are calculated across the moving interface. At the same time, the center of the cell,
such as ðxn

i;j; y
n
i;jÞ, moves to a new location through
xnþ1
i;j ¼ xn

i;j þ U gðtnþ1 � tnÞ;
ynþ1

i;j ¼ yn
i;j þ V gðtnþ1 � tnÞ:

(
ð22Þ
The location of cell vertex is updated by averaging the centers of four neighboring cells.
Step 4: With the new mesh location xn+1,yn+1, calculate (A,B,L,M) and D using (21). Then, update the con-

servative variables by the finite volume scheme (15) in the newly moved cells. It can be shown that the
use of (21) to calculate (A,B,L,M) is the same as the geometrical conservation law (3), such as the
update of A:
Anþ1
i;j ¼

ox
on

� �nþ1

i;j

¼
xnþ1

iþ1=2;j � xnþ1
i�1=2;j

Dn
¼

xn
iþ1=2;j þ ðUgÞniþ1=2;jDkn � xn

i�1=2;j � ðUgÞni�1=2;jDkn

Dn

¼
xn

iþ1=2;j � xn
i�1=2;j

Dn
þ Dkn

Dn
ðU gÞniþ1=2;j � ðU gÞni�1=2;j

	 

¼ An

i;j þ
Dkn

Dn
ðUgÞniþ1=2;j � ðUgÞni�1=2;j

	 

:
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Similarly, it is true for B, L, and M.

Then, go to step (2) to repeat the above process until the output time.

3. Numerical experiments

As mentioned earlier, the main advantage of the current method is that the fluid system under unified coor-
dinate is coupled with the geometrical conservation laws. Mathematically, the unified system provides a com-
plete enlarged system, which avoids the difficulties in other moving mesh methods to implement the
geometrical conservation separately based on the physical intuition. Also, different from the Eulerian and
Lagrangian methods, the choice of grid velocity (Ug,Vg) becomes a new degree of freedom in the current
model. The proper choice of the grid speed depends on the specific applications to get the optimum accuracy
in the numerical solution. For example, the grid velocity can be the fluid velocity in the free surface flow, or
follow the oscillating angular velocity for a pitching airfoil. In the approach by Hui et al. [10], to preserve the
grid angle has been used to get the local value h in the determination of grid velocity (hU,hV). In this section,
the BGK–NS scheme on a moving mesh will be tested on many examples. Different choice of the grid velocity
will be used. The numerical results are compared with the exact solutions, experimental data, and the available
solutions obtained by others.

Case (1) Free surface flow

The current approach with the choice of (Ug,Vg) = (U,V) becomes a purely gas-kinetic Lagrangian method
even though it is solving the viscous governing equations. The use of the fluid velocity as the grid speed can
naturally capture the free surface. The case we are going to study is the dam break problem, where a column of
water is released by removing a vertical diaphragm. This becomes a standard benchmark problem due to its
simple geometry and the available experimental measurement [12]. The initial configuration is shown in the
upper left picture in Fig. 2. In this example, a rectangular column of water in hydrostatic equilibrium is con-
fined initially between two vertical walls. The water column is 7.0 units high and 3.5 units wide. The gravity is
acting downward with 0.05 unit magnitude.

After the diaphragm eruption at time t = 0, the water is pushing out and moves freely along a dry horizon-
tal floor. The measured quantities include the water wave front location L on the floor. In our calculation,
40 · 20 rectangular mesh points are initially employed in a domain 0 6 x 6 3.5, 0 6 y 6 7.5. Fig. 2 presents
the moving mesh at 4 subsequent times. Since the grid speed is equal to the fluid velocity, the mesh distribution
is the same as the water distribution. In a purely Lagrangian simulation, the mesh is easily tangled at a later
time. Since we have used a mesh smoothing technique through the mesh adaptive method with a constant
monitor function to equally distribute the mesh, the moving mesh becomes generally smooth all over the
domain even though the mesh adaptation steps are applied only a few times.

Fig. 3 shows the water tip location versus time for both simulation and experimental measurement. The
non-dimensional time in the horizontal coordinate is normalized by t

ffiffiffiffiffiffiffiffiffiffiffiffi
2g=W

p
.

Case (2) 2D model of a pitching airfoil

This is about the flow passing through a pitching airfoil. The airfoil undergoes pitching oscillations around
a point on the chord with one quarter length from the leading edge. In the current case, a NACA 0012 airfoil
was used and the chord was placed at the x axis initially. The free stream velocity U1 is parallel to the x axis
with a Mach number M = 0.755. The oscillation cycle is defined by
a ¼ am þ a0 sin xt; with am ¼ 0:016� and a0 ¼ 2:51�;
where x is the circular pitch frequency, c is chord length, and xc/2U1 = 0.0814. In many computations, the
mesh is fixed and the free stream U1 velocity is being rotated in the opposite direction as the airfoil pitching.
However, in the present calculation, the whole mesh around the airfoil is moving with the airfoil and the grid
velocity (Ug,Vg) is calculated according to the angular velocity of the pitching airfoil and the distance between
the grid point and oscillating center. The oscillating center is at the origin. Since only mesh is rotating, all flow
variables at 1, such as U1, are unchanged in the current Eulerian space. In our calculation, a U-type mesh
with 178 · 44 grid points on a span of eight chord distance is used. Fig. 4 shows two instant meshes near the
airfoil at different angles of attack.



0 2 4 6 8
0

1

2

3

4

5

6

7

time=0.0
0 2 4 6 8

0

1

2

3

4

5

6

7

time=9.46

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

time=14.0

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

time=19.7

Fig. 2. Moving mesh at time t = 0,9.46,14.0,19.7.
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Fig. 5 presents the lift coefficient Cl versus instantaneous angle of attack a. The numerical solutions give
good agreements with the experimental data. Fig. 6 presents the detailed pressure distribution Cp around
the surface of the airfoil at different angle of attack a. Also, good agreement between the numerical and exper-
imental results are obtained. Since the grid velocity in the current unified gas-kinetic scheme can be chosen
freely, it may have advantage in applying this method in the biology insect flight computations where the mesh
can follow the complicated wing movement.

Case (3) Shock reflection inside a channel with a ramp

In order to preserve the grid angles [10], the grid speed (Ug,Vg) = (hU,hV) can be obtained by solving the
following equation for h:



0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

t (2g / W)1 / 2

L 
\ W

Exp.

MMM.

Fig. 3. The time dependent location of water front. Experimental measurement versus the calculation from moving mesh method
(MMM).

x

y

-0.5 0 0.5 1
-1

-0.5

0

0.5

x

y

-0.5 0 0.5 1

-0.5

0

0.5

1

Fig. 4. Moving meshes near NACA 0012 airfoil at two different angles of attack: a = am (left) and a = am + a0 (right).

C. Jin, K. Xu / Journal of Computational Physics 222 (2007) 155–175 165
o

ok
rn
jrnj �

rg
jrgj

� �
¼ 0;
where $n = (M,�L)/D, $g = (�B,�A)/D, and h is the flow angle: U = qcosh, V = q sinh, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2 þ V 2

p
. Let

~g ¼ lnðhqÞ, then the above equation becomes:
S2ðA sin h� B cos hÞ o~g
on
þ T 2ðM cos h� L sin hÞo~g

og
¼ S2 B

o cos h
on

� A
o sin h

on

� �
� T 2 M

o cos h
og

� L
o sin h

og

� �
:

ð23Þ

Numerically, Eq. (23) can be solved by an iterative method to get h at different grid point. The detail descrip-
tion was given in [10].

In the current supersonic flow of M = 1.8 passing through a ramp in a channel, Eq. (23) is used to calculate
h, then determine the grid velocity. Here the ramp with 15� is placed at the lower wall between x = 0.5 and
x = 1.0. A computational grid with 180 · 50 grid points in the physical domain {0 6 x 6 3.6, 0 6 y 6 1.0}



Fig. 5. Lift coefficients versus angle of attack in the airfoil pitching problem.

Fig. 6. Pressure distributions at different angle of attack.
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is initially generated. An initial flow data with (p,q,M,h) = (1, 1,1.8,0) is imposed inside each cell, as well as at
the left boundary. Reflection boundary conditions are used at the top and bottom walls. When h is chosen
according to Eq. (23), the mesh will automatically preserve the grid angle, which is shown in Fig. 7. Fig. 8
presents pressure and Mach number distributions after the steady state solution is obtained.

Case (4) Viscous solution above an oscillating wall

This is called Stokes’ second problem, which considers fluid motion above an infinite flat plate which exe-
cutes sinusoidal oscillations parallel to itself. This problem has been simulated earlier by the purely adaptive
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mesh method [13]. The fluid above the plate is initially stationary. The governing equation of velocity U in the
x-direction is
oU
ot
¼ m

o2U
oy2

; ð24Þ
with the boundary conditions
Uwallð0; tÞ ¼ U 0 cos xt; Uð1; tÞ ¼ 0:
The exact solution for the above problem is,
Uðy; tÞ ¼ U 0e�y
ffiffiffiffiffiffiffi
x=2m
p

cos xt � y

ffiffiffiffiffi
x
2m

r� �
: ð25Þ
At y ¼ 4
ffiffiffiffiffiffiffiffi
m=x

p
, the amplitude of U is equal to U 0 expð�4=

ffiffiffi
2
p
Þ ¼ 0:05U 0, which means that the influence from

the wall is confined within a distance of order d � 4
ffiffiffiffiffiffiffiffi
m=x

p
. Since the gas-kinetic scheme solves the compress-

ible Navier–Stokes equations, in order to simulate the above incompressible limiting solution the Mach num-
ber for the compressible flow takes a small value, i.e., M = 0.15. The kinematic viscosity coefficient takes a
value m = 0.00046395, and a mesh size with 10 · 70 grid points is used.

In the current calculation, we have used two ways to determine the mesh velocity. In the first case, we used
the purely Lagrangian method for the viscous solution, where the grid velocity follows the fluid one. Due to



   

Fig. 9. Lagrangian gas-kinetic scheme for viscous flow. Mesh (left) and velocity (right) distributions at time xt = p/25.
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large velocity shear in the boundary layer, the Lagrangian method will stretch the mesh severely. This is the
main reason why nobody really used Lagrangian method for the viscous flow computation. However, it is still
theoretically interesting to see the solution using gas-kinetic Lagrangian method. Fig. 9 shows the mesh (left)
   

Fig. 10. Gas-kinetic scheme for viscous flow with (Ug,Vg) = (Uwall, 0). Mesh (left) and velocity (right) distributions at time xt = p/2.



Fig. 11. Moving and
C. Jin, K.
and velocity (right) at time xt = p/25 when the mesh follows the fluid velocity. Even though the mesh has been
stretched greatly, it is surprising that the numerical solution is very close to the exact solution. This proves the
robustness and accuracy of the current kinetic scheme for the viscous computation. With the time increasing,
the mesh will be stretched further until 70 grid points are not enough to follow the time increasing velocity arc-
length. Eventually, the computation will stop. If the mesh velocity at all grid points follow the wall velocity,
such as (Ug,Vg) = (Uwall, 0), the mesh will not get tangled. Fig. 10 shows the mesh and simulation results at
xt = p/2.

Case (5) Shock wave interaction with a rotating cylinder

An incident shock wave with Mach number Ms = 1.19 from the left impinges on an anti-clockwise rotating
cylinder. The test gas is air at pressure P�1 = 100 kPa and temperature T�1 = 298 K, respectively. In the cur-
rent computation, non-slip boundary condition is imposed around the surface of the rotating cylinder. The
dynamical viscosity coefficient l takes the power law:
adaptive grids
Xu
l
l�1

¼ T
T�1

� �n

¼ 1=k
1=k�1

� �n

; n ¼ 0:666;
where k = q/2p, k�1 = q�1/2p�1, and l�1 = 1.716 · 10�5 Ns/m2. The cylinder has a radius R = 0.07 m and
the surface rotating velocity has a value to be equivalent to Mach number M = 0.3. Besides the mesh velocity
follows the rotating cylinder with a value rx, where r is the distance from the rotating center to the mesh point,
an adaptive mesh method is also used to concentrate the mesh in the high velocity gradient region [13]. The
solutions around the shock front and inside the boundary layer are captured accurately due to the mesh con-
centration. Numerical mesh at times t = 0.106, 0.179 are shown in Fig. 11. Fig. 12 shows the sequential pres-
sure contours after shock reflection from the cylindrical surface. Because of the viscous effect, the locations of
the triple points on the upper and lower surfaces are different, as well as the length of Mach stem. The Mach
stem is longer on the lower surface where the shock wave propagates with the same direction as the rotating
surface. On the contrary, on the upper surface the Mach stem is suppressed due to their opposite moving
directions. Although accurate measurement of shock wave over a moving body is rather difficult, the different
shock wave distribution on both upper and lower surfaces has been observed experimentally. In [18], the
experimental observation showed that the length of the Mach stem on the lower surface is indeed longer than
that on the upper surface, which is consistent with the current computational result. For the inviscid flow com-
putation, the solution is irrelevant with the rotation of the cylinder due to the implementation of slip boundary
condition.
at timet= 03106, 03179.
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Fig. 14. Velocity U profiles along the central vertical line at Re = 1000 after one, two and three full rotations.

Table 1
U-velocity distributions along vertical central line at Re = 1000

Time = 2p Time = 4p Time = 6p

y U y U y U

�0.49674 0.47419 �0.49580 0.48181 �0.49513 0.48611
�0.45919 0.27910 �0.45029 0.31605 �0.44439 0.33977
�0.41211 0.13619 �0.39639 0.18935 �0.38667 0.22391
�0.35012 0.04468 �0.33326 0.09404 �0.32162 0.13113
�0.25932 0.00967 �0.25374 0.03519 �0.24469 0.06532
�0.15179 0.00382 �0.15394 0.00975 �0.15151 0.02615
�0.04298 0.00329 �0.04441 0.00235 �0.04476 0.00663

0.06586 0.00299 0.06659 �0.00114 0.06698 �0.00688
0.17473 0.00177 0.17518 �0.01107 0.17172 �0.02974
0.28056 �0.00831 0.27106 �0.04276 0.26130 �0.07437
0.36354 �0.05603 0.34621 �0.10971 0.33513 �0.14631
0.42069 �0.16095 0.40677 �0.21226 0.39825 �0.24436
0.46533 �0.31610 0.45867 �0.34656 0.45427 �0.36586
0.49594 �0.48614 0.49525 �0.48838 0.49474 �0.48976
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Case (6) Rotating cavity flow

The cavity flow inside a square cylinder with upper moving boundary has been calculated by many authors
and becomes one of the benchmark test case for the incompressible Navier–Stokes equations [8]. Here, we
design a new test case, where the whole 2D square cavity with boundary length 1 starts to rotate around
its center at time t = 0 with a constant angular velocity x = 1, where the viscosity coefficient is set to a value
with the Reynolds number Re = 1000 for velocity difference DU = 1 and L = 1. Since we are using a compress-
ible code to calculate the incompressible solution, the initial Mach number according to the rotating velocity
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at the cavity surface is M = 0.15. A mesh with 65 · 65 grid points is used in the current computation. The
computational mesh is rotating with the cavity, at the same time adapted according to the velocity gradients.
Fig. 13 shows the mesh in the physical domain at time¼ 3

4
p. Obviously, grid points are concentrated in regions

close to the boundaries with large velocity gradients. Fig. 14 displays the velocity U profiles along the central
vertical line after one, two, and three rotations xt = 2p, 4p, and 6p. The specific velocity values are listed in
Table 1 for future reference. Since this is an unsteady problem, the U-velocity along vertical central line
depends on time in the early transition period.
4. Conclusion

In this paper, the gas-kinetic BGK equation is transformed into a moving frame of reference and a uni-
fied numerical scheme for the viscous solution is developed. This is a finite volume gas-kinetic scheme on a
moving grid in the Eulerian space and the mesh velocity can be properly chosen to capture flow movement
with moving boundaries. The Eulerian and Lagrangian methods are two limiting cases for the current
scheme. In order to increase the robustness and accuracy of the current method, the mesh adaptation
is also implemented in the current method, which not only remedies the distorted mesh, but also concen-
trates the mesh in the high gradient regions. The current unified gas-kinetic method has been applied to
many flow problems, such as the free surface flow and Mach reflection inside a channel, where both invis-
cid and viscous solutions have been accurately obtained. Also, for the first time, the Lagrangian gas-kinetic
scheme has been used in the viscous boundary layer calculation. The great advantage of the current
scheme with a variable mesh velocity is that the gas-kinetic equation and geometrical conservation laws
are combined as a unified system. The physical and geometrical variables can be updated simultaneously.
Due to the relaxation term in the gas-kinetic model, the numerical treatment of the complicated viscous
terms in the Navier–Stokes equations under the unified coordinate transformation (see appendix) can be
avoided.
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Appendix. The Navier–Stokes equations under unified coordinate transformation

The flow equations in 2D Eulerian space can be expressed as
oQ
ot
þ oE

ox
þ oF

oy
¼ oEv

ox
þ oF v

oy
; ð26Þ
where
Q¼

q

qu

qv

qe

0
BBB@

1
CCCA; E¼

qu

qu2þp

quv

ðqeþpÞu

0
BBB@

1
CCCA; Ev¼

0

sxx

sxy

usxxþvsxy�qx

0
BBB@

1
CCCA; F ¼

qv

quv

qv2þp

ðqeþpÞv

0
BBB@

1
CCCA; F v¼

0

syx

syy

usyxþvsyy�qy

0
BBB@

1
CCCA:
For a Newtonian fluid,
sxx ¼ 2l
ou
ox
þ jr � ~V ; syy ¼ 2l

ov
oy
þ jr � ~V ; sxy ¼ syx ¼ l

ou
oy
þ ov

ox

� �
; ð27Þ
and
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qx ¼ �
lcp

P r

oT
ox
; qy ¼ �

lcp

P r

oT
oy
: ð28Þ
With the following transformation between the physical (t,x,y) and computational space (k,n,g),
dt ¼ dk

dx ¼ xkdkþ xndnþ xgdg

dy ¼ ykdkþ yndnþ ygdg;

8><
>: ð29Þ
we can get the inverse transformation,
dk

dn

dg

0
B@

1
CA ¼

1 0 0

nt nx ny

gt gx gy

0
B@

1
CA

dt

dx

dy

0
B@

1
CA: ð30Þ
The N–S Eq. (26) in the computational space (k,n,g) become:
oQ
ok
þ oE

on
þ oF

og
¼ oEv

on
þ oF v

og
; ð31Þ
where
Q ¼ DQ;

E ¼ DðntQþ nxE þ nyF Þ;
F ¼ DðgtQþ gxE þ gyF Þ;
Ev ¼ DðnxEv þ nyF vÞ;
F v ¼ DðgxEv þ gyF vÞ;

ð32Þ
and D = o(x,y)/o(n,g) = xnyg � xgyn.
For a system with mesh moving velocity (Ug,Vg), we have:
1 0 0

xk xn xg

yk yn yg

0
B@

1
CA ¼

1 0 0

U g A L

V g B M

0
B@

1
CA: ð33Þ
Therefore, we get
1 0 0

nt nx ny

gt gx gy

0
B@

1
CA ¼ 1

D

D 0 0

�Ig M �L

�J g �B A

0
B@

1
CA; ð34Þ
where D = AM � BL, Ig = MUg � LVg, and Jg = AVg � BUg. Hence, the variables in Eq. (31) are:
Q ¼ DQ;

E ¼ ð�IgQþME � LF Þ;
F ¼ ð�J gQ� BE þ AF Þ;
Ev ¼ ðMEv � LF vÞ;
F v ¼ ð�BEv þ AF vÞ:

ð35Þ
The viscous shear stresses given by Eq. (27) with Stokes’ hypothesis j ¼ � 2
3
l become the following in the

transformed computational space:
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sxx ¼
l
D

4

3
ðMun � BugÞ �

2

3
ð�Lvn þ AvgÞ

� �
;

syy ¼
l
D

4

3
ð�Lvn þ AvgÞ �

2

3
ðMun � BugÞ

� �
;

sxy ¼
l
D
ð�Lun þ Aug þMvn � BvgÞ;

ð36Þ
and the heat conduction terms in Eq. (28) are:
qx ¼ �
lcp

prD
ðMT n � BT gÞ;

qy ¼ �
lcp

prD
ð�LT n þ AT gÞ:

ð37Þ
In the computational space, the viscous flux vector Ev and F v are
Ev ¼
l
D

0
4
3
M2 þ L2

� �
un � 1

3
MLvn þ � 4

3
MB� AL

� �
ug þ � 2

3
AM þ BL

� �
vg

� 1
3
MLun þ M2 þ 4

3
L2

� �
vn þ MA� 2

3
BL

� �
ug þ �MB� 4

3
AL

� �
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1
2

4
3
M2 þ L2

� �
ðu2Þn þ 1

2
M2 þ 4

3
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ðv2Þn � 1

3
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2
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� �
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� �
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� �
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0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ð38Þ
and
F v ¼
l
D

0

� 4
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MB� AL

� �
un þ MA� 2

3
BL

� �
vn þ 4

3
B2 þ A2

� �
ug � 1

3
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3
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